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Abstract This paper proposes an explicit definition of

green software requirements and a tool to support their

evaluation. The proposed evaluation tool describes the

green efficiency by considering the energy consumption as

the main aspect to be studied during the development stage.

This approach consists of building a multiple regression

model, by using a supervised learning algorithm, in order

to reproduce the energy consumption pattern of devices at

different workload circumstances. The energy consumption

model is then deployed to estimate the impact of software

applications based on their resource usage. Our work has

been validated on desktop and mobile devices. The

experiments show the effectiveness of the proposed energy

profiling tool that provided relevant information on the

energy consumption of software applications.

Keywords Software engineering � Energy consumption

model � Green software � Green requirements � Software
development � Green software engineering � Random
decision forests � Multiple regression model

1 Introduction

In the past decade, green IT practices emphasized the

application of environmental constraints on hardware

design to mitigate their direct negative effect [6]. However,

in more recent years, the energy optimization techniques

have gone beyond the hardware level to reach the software

level. These optimization techniques aim at developing

software which behaviour follows that of the devices’

energy efficiency techniques. Software could be helpful to

enhance the green efficiency of the information technology

(IT) infrastructures [28], although it carries a direct

rebound effect on the energy consumption of the involved

IT infrastructures. Software behaviour plays a significant

role in determining the energy consumption of the hard-

ware [29] where an intensive usage of computation, com-

munication, and data storage resources often lead to a

greater negative impact [24], especially on mobile devices

since they have limited battery life [15].

In this context, a green software can help to directly

improve the energy efficiency of the IT hardware, where

software energy efficiency is defined as the amount of

energy required to complete a specific task per unit of

time [29]. Moreover, Zhang and Hindle [29] argue that the

energy efficiency benchmark should be user-centric and

based on real applications in order to put pressure on

developers to improve the energy efficiency of their

applications. At this point, there are many state of the art

programming techniques [9] and design guidelines to

improve the energy efficiency. However, the software

engineering process must be more concerned with the

green issues related to the software.

The existing software development life cycle models,

such as the waterfall and the spiral models, emphasize the

development, the maintenance, and the business aspects of
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the software. It is clear that these models do not explicitly

treat the identification of the green constraints to express

the impact of software on the environment [7]. To meet the

importance of developing green software systems, devel-

opers need design tools with generalized characteristics

and unified aspects to embody the green constraints

explicitly in the development life cycle. These software

development life cycle models need to be adapted to help

with (1) designing and modelling, (2) analysing scenarios

of long-term change, (3) and testing the software green

efficiency. Therefore, the integration of green requirements

into the software engineering processes is important [1, 2].

Furthermore, the analysis of these green constraints is a

crucial task to evaluate the design and the implementation.

In this paper, we focus on the requirements specification

and testing activities. We introduce a set of green

requirements that concern the direct negative impact of

software and that are specified as software quality. To

analyse the proposed characteristic, we present a profiling

tool to measure that quality and to evaluate the green

efficiency of software. The measurement is done using a

self-adaptive energy profiling tool that can be deployed on

a variety of devices. It is built using a statistical approach

that consists of establishing multiple regression models to

fit the energy consumption with the device’s resource

usage under different workload variations. For each device,

the energy consumption pattern can be saved and used later

to investigate the energy consumption of software appli-

cations based on their workload data over the time.

Moreover, to build the regression model, we rely on the

random decision forests algorithm as a regression process

method that makes effective the process of establishing the

energy consumption model.

The remainder of this paper is organized as follows. In

Sect. 2, we present a green macrospiral life cycle. In Sect. 3,

we discuss the integration of the green constraints in the

requirements specification. In Sect. 4, we present our

methodology to build the profiling tool. The experiments are

presented in Sect. 5. The relatedwork is presented in Sect. 6.

Finally, we conclude and discuss future directions in Sect. 7.

2 Green awareness

The software development life cycle involves several

sequentially related activities to be followed by software

engineering practitioners in order to develop the desired

software, where each activity uses the results of the pre-

vious one. Reducing the negative ecological impact that

can be caused by software is an important concept that

needs to be integrated into the different life cycle activities.

The green constraints fit into the category of non-functional

requirements [20] that must be explicitly defined in the

requirements specification activity and supported by the

design and implementation of software. In addition, having

a profiling tool is important to increase the developers’

awareness about the behaviour of their software. This tool

enables the measurement of the green requirements of the

testing activity. Thus, a particular emphasis must be

stressed on the requirements specification and consequently

to the software green quality evaluation.

In Fig. 1, a simple model is presented for the green

software life cycle that includes the involvement of green

constraints in the different activities.

The described process is a macrospiral development life

cycle in which green constraints are applied as additional

conditions that target the enhancement of the green aspects

of the software in each phase of the macrospiral. The soft-

ware prototype is evaluated to judge its efficiency as well as

to acquire information on the system’s components that can

be greener. The assessment would suggest the plan for the

next iteration. The proposed model represents an underlying

software development process that consists of iteration series

leading to an increase in the software green efficiency.

3 Green software requirements and metrics

One of the most useful software product quality models for

requirements engineering is the ISO/IEC 25010:2011

standard.1 The standard quality model is a revision of the

Fig. 1 Green macrospiral software development life cycle

1 ISO/IEC JTC 1/SC 7, ISO/IEC 25010:2011, Systems and software

engineering—Systems and software quality requirements and evalu-

ation (square)—System and software quality models, 2011.
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ISO/IEC 91262 (2001), which specifies the essential soft-

ware quality attributes that are used to judge how software

is intended to be. The ISO/IEC 25010:2011 quality model

classifies the software constraints into a set of character-

istics and associates their corresponding subcharacteristics

to describe the behaviour of the software in development

(internal/external) and usage context (in-use) stages. Fur-

thermore, the standard affiliates the corresponding metrics

to test and evaluate each of those attributes.

The standard quality model implicitly involves the green

aspects of the software in the quality in-use characteristics

division as freedom from risk characteristic. It defines the

risk as the occurrence probability function of a given threat

and the potential adverse consequences of the threat event.

The freedom from risk is specified to mitigate the risk

caused by the software to the economy, health, and envi-

ronment. However, no further recommendations are pro-

vided to elicit the requirements of developing a green

software nor to discriminate the green aspects of the soft-

ware at the internal/external view.

The primary factors that determine the green aspects of

the software as a product are related to the energy con-

sumption [13], since it is the principal resource used by the

hardware to run the software. To represent reducing the

energy consumption as a requirement that will be consid-

ered at the development stage, we incorporate the green

efficiency (Table 1) as an additional characteristic of the

software quality model. The defined characteristic expres-

ses the degree to which the software behaviour mitigates

the energy consumption of the infrastructure. In other

words, the specification of the green efficiency character-

istic in the requirements specification activity aims to

enhance the software behaviour towards the energy usage.

Furthermore, analysing and evaluating the green efficiency

at the internal/external views leads to a better under-

standing of green software behaviour.

In general, an intensive usage of resources such as the

processor, network interfaces, and the storage components

requires more energy than in an optimized usage. More-

over, some hardware components have the tendency to

spend energy more than others. Therefore, developers must

specify the green efficiency with more details to express

which category of hardware components usage must be

optimized using adequate energy optimization techniques

(depending on the nature of their software). Sabharwal

et al. [24] group the main green techniques to optimize the

energy consumption of the implemented software into

three sets: computation efficiency, data efficiency, and

context awareness. Based on that categorization of the

optimization techniques, we derive the corresponding

subcharacteristics of the green efficiency characteristic. We

propose four subcharacteristics: green computation effi-

ciency, green data management, green data communica-

tion, and energy consumption awareness. The first three

subcharacteristics overcome the green efficiency issues at

the computation, communication, and storage levels of the

software. The fourth subcharacteristic provides a descrip-

tive behavioural energy consumption awareness chart. We

define the corresponding subcharacteristics as:

• Green computation efficiency: expresses the ability of

the software to process the demanded workload

efficiently by consuming an optimal amount of energy.

• Green data management: expresses the effectiveness of

the implemented data management strategies to per-

form I/O operations at low energy consumption.

• Green data communication: expresses the efficiency of

energy management policies when the software sends

and receives data over the communications network.

• Energy consumption awareness: describes the whole

energy consumption of the software in order to

determine the different consumption levels and to

Table 1 Green internal/

external quality model
Characteristic Subcharacteristics

Functional

suitability

Functional completeness, functional correctness, functional appropriateness

Reliability Maturity, availability, fault tolerance, recoverability

Usability Appropriateness recognizability, learnability, operability, user error protection, user

interface aesthetics, accessibility

Performance

efficiency

Time behaviour, resource utilization, capacity

Maintainability Modularity, reusability, analysability, modifiability, testability

Portability Adaptability, installability, replaceability

Security Confidentiality, integrity, non-repudiation, accountability, authenticity

Compatibility Coexistence, interoperability

Green efficiency Green computation efficiency, green data management, green data communication,

energy consumption awareness

2 ISO/IEC JTC1/SC7, Software engineering product quality model,

2001.
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define the expected behaviour of the software at the

peak, the average, and the low energy usage.

The effectiveness of the defined requirements varies

depending on the nature of the software, the implementa-

tion techniques, the software design, and the configuration

of the hardware used to run the software. In order to assess

their effectiveness, a set of measures should be linked to

the proposed requirements in the model of software quality.

The goal is to quantify the extent to which these require-

ments are fulfilled in the implementation activity. We

connect the green attributes with the corresponding metrics

related to the hardware components responsible for the

energy consumption when being used by the software.

Figure 2 shows the associated metrics to the green sub-

features of the software.

Computation metrics: measurement counters related to

the set CP ¼ fcp1; cp2; . . .; cpzg of processing units that are
dedicated to perform the computation operations. Compu-

tation metrics are associated with the green computation

efficiency subcharacteristic, which corresponds to the

quantification of the energy consumed by the software

when performing operations on the computing resources

(e.g. CPU usage).

Data storage metrics: measurement counter related to

the set ST ¼ fst1; st2; . . .; stwg of storage components used

by the software to perform data storage operations on the

local storage components. This category of metrics is

associated with the green data management efficiency

subcharacteristic in order to measure the amount of energy

consumed when software is performing the operations of

reading and writing on the storage devices (read/written

bytes).

Communication metrics: measurement counters related

to the set CO ¼ fco1; co2; . . .; comg of communication

components to count the number of operations or the

amount of data that have been sent or received over the

network interfaces.

Energy consumption metric: this metric answers the

question ‘‘How much energy does a software consume?’’

The measurement indicates the energy consumption due to

a software by relying on the hardware resources usage.

In addition to the computation, storage, and commu-

nication components, many external factors play a role in

determining the pattern of the energy consumption in IT

devices (e.g. the hardware configuration, the product

design, the battery ageing factors). An adaptive energy

consumption profiling tool has to be built to measure the

energy consumption of software on different platforms at

different conditions. It aims at providing an answer to

the question: ‘‘How much energy does a software con-

sume?’’ It must estimate the impact of a particular

software application on the energy consumption of the

device rather than determining the energy usage of the

whole device (including the background process and the

operating system). Furthermore, we believe that the

energy model should also be extensible to include the

diversity of the hardware components that may be

available on the devices since the energy consumption

depends on those factors.

4 Random decision forests for profiling the energy
usage

The design of an energy profiling tool must satisfy a set of

requirements. The first concern is estimating the energy

usage of the software based on its resource utilization data.

The estimation must be specific to the software by sepa-

rating its impact from the background consumption caused

by the other running software in a multitasking operating

system (infrastructure energy overhead [26]). Secondly, it

has to track the behaviour of the software components to

evaluate their impact at different granularity levels (e.g.

process, thread, routines). The third objective concerns the

tool itself, in that it should be adaptive to fit the variety of

the hardware configurations where the workload data can

be rendered. It must also be usable on different platforms

(PCs, smartphones, tablets) and reusable when the power

measurements given by the an external instrumentation are

no longer needed during the estimation process.

The methodology used to establish the estimation tool

consists of four successive stages. These steps are per-

formed to build an energy consumption model for each

device in which the software will be tested and evaluated:

1. Classifying the components of the device into their

corresponding category (computation, storage, com-

munication) and defining the metrics to measure their

usage.

2. Collecting the data related to the usage of components

at the device level along with its corresponding energy

consumption.

Fig. 2 Green requirements associated metrics

30 Requirements Eng (2017) 22:27–40
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3. Establishing an energy model using a regression

process to simulate the energy consumption pattern

of the device.

4. Deploying the established regression model to estimate

the energy consumption of a software based on its

workload.

The first step consists of setting a list of hardware com-

ponents with which the software will be involved

(Table 2). With each component, we associate the corre-

sponding metric that will be used to measure the workload

data. In the second step, we estimate the processed work-

load and the energy consumption of the device at a fixed

sampling rate. During the fourth step, the collected data are

then used to build the regression model that emulates the

energy consumption pattern of the device. Finally, the

model is deployed to estimate the energy consumption of

software based on their workload.

From a hardware perspective, the energy consumption

of a device at the time t has the tendency to vary depending

on the affected workload of the different components.

Knowing the characteristics of the affected workload and

the energy usage model of the device allows the prediction

of the consumption related to a software. It has been shown

in [8] that an energy model of a device can be represented

by a function g that links the predictors xt;1; xt;2; . . .; xt;k,

which correspond to resource usage data to the response of

the model yt (energy usage). The formulation of the func-

tion g is presented in Eq. 1.

yt ¼ gðxt;1; xt;2; . . .; xt;kÞ ð1Þ

In other words, having a set Ck of computation, storage,

and communication components, where Ck ¼ CP [ ST

[CO, the problem can be stated as finding a mapping

function gðvtÞ that correlates the measured workload data

(input data) vt ¼ fxt;1; xt;2; . . .; xt;kg with the energy con-

sumption (output data) yt at a given time t.

Figure 3 illustrates the relationship between the input

and the output data in addition to the role of the mapping

function g. Cj=ðj ¼ 1; 2; . . .; kÞ is the hardware component j

and xi;j is the sampled usage measurement of workload

performed by Cj at time i. yi is the measured value of

energy consumption at time i related to component usage

data of the components set C. In this context, yt is desig-

nated as a dependent variable that has continuous values

measured in joules (or watts) and that quantifies the energy

consumption. The variables xt;1; xt;2; . . .; xt;k are considered

as a set of independent predictors that quantify the work-

load at components c1; c2; . . .; ck. Thus, an adequate way to

find the mapping function gðvtÞ is to define the problem as

a multiple regression problem where the resource usage are

used to predict the energy consumption. Despite the rela-

tionship between the input and the output data (linear or

nonlinear), our goal is to establish an easily adaptable and

deployable tool that can be used in a wide variety of cases

and devices. We use the machine learning techniques to

solve the presented multiple regression problem.

In this work, we deploy the nonparametric random

decision forests (RDFs) [3] technique as a general data

mining algorithm to build the energy consumption regres-

sion model. The RDF method fits within the machine

learning algorithms category. It is shown to be useful in

several types of data mining tasks such as regression,

classification, semiautomatic learning, and density esti-

mation. The RDF method consists of a set of decision trees

[22]. It was first introduced for the recognition of hand-

written digit recognition and then was successfully

deployed to solve many other machine learning problems.

The main strength of this method is its accuracy when

processing previously unseen data. The diversification

generated by the randomization process improves the

results obtained from the different models (Fig. 4). Ran-

domness in the decision forests technique is presented in

several forms, such as the random selection of the features

[11] and the random selection of the training samples [3].

The difference between the trees offers more precision and

efficiency in processing new data.

A decision tree is a predictive model of a set of nodes

that form a graph without loops and uses a set of binary

rules to calculate a target value. The nodes in the decision

tree graph designate split test functions that are applied to

Table 2 A descriptive table of energy consumption regression

model’s data (input/output)

Components Types Metrics Unites

Input C1 Computation Usage Per cent

Frequency GHz

C2 Storage Read Bytes

Write Bytes

C3 Communication Sending Bytes

Reception Bytes

Output C4 Energy Usage Joule or uA

Fig. 3 Workload and energy consumption data
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the data. The leaves of the tree represent the decision or the

class of the data processed. The processing of the decision

trees is established in two stages:

1. The first stage is the learning stage. Parameters

optimization of the tree nodes is performed using a

set of training data that is constituted of labelled data.

The learning algorithm determines the feature to be

processed in each node, and the best split value of the

node that optimizes a criterion (e.g. entropy). In our

case, the criterion to be optimized is the mean-squared

error function that is given in Eq. 2.

2. The second stage is the processing stage. In this phase,

series of tests are applied to the input vector v, at each

node, starting from the root of the tree. The tests are

repeated until reaching a leaf node that determines the

decision.

MSE ¼ 1

n

Xn

i¼1

ðyi � y0iÞ
2 ð2Þ

After defining the input and output metrics and measure-

ment units, the next step is to collect data that will be

divided into two data sets. The training data set is used to

build the regression model. The test data set is used to

determine the optimal RDF algorithm parameters values

that minimize the regression error and consequently

increase the efficiency of the energy consumption estima-

tor. In our case, the learning process of the RDF algorithm

is performed to simulate the energy consumption pattern of

the device in which the software will be tested. The

learning process uses a data set that contains the workload

measurements and the energy usage data. Table 2 shows an

example of a general chart of data and their metrics that

will compose the data set.

Here, the objective is to minimize the total error of

prediction that is the squared difference between the real

value yi and the predicted value y0i for n observations.

Given a training set d ¼ ðvi; yiÞ=i ¼ 1; 2; . . .; n of input

vectors vi representing the hardware components usage

data associated with their corresponding energy con-

sumption yi. The goal is to fit a function g(v), which

approximates the relation inherited between vi and yi.

The established model that is represented by g will be

used during the fourth step to infer the output y of a new

input data related the tested software. In Fig. 5, we

present the conceptual framework of the energy profiling

tool.

5 Experimental study

5.1 Evaluation of mobile software applications

In this section, we present a case study to measure the

green efficiency of mobile applications. The description of

the mobile device’s configuration is provided in Table 3.

The classification of the device components: first, we

designate the hardware components that will be included in

the testing and the metrics to measure their usage. In this

case, we activate only the components defined in Table 4,

and we disabled the rest of the components such as the 2G/

3G network interfaces for the whole experiment.

Data collection: during the second step, we collected the

workload measurement and the energy usage of the test

device. The fulfilment of this task is done by a data col-

lection programme that is executed on a desktop computer.

The measured data are obtained using the Android Debug

Bridge (ADB) tool and recorded by a Python script

(Fig. 6). The resulting data set is saved in a comma-sepa-

rated values file (*.CSV). The columns in the saved file

correspond to the performed workload data resulting from

each component listed in Table 4 at a fixed sampling time.

In this experiment, the data set is collected during 2 h of

recording at a sampling rate of 1 s (7200 samples). The

Fig. 4 Random decision forests process

Fig. 5 A conceptual schema of the proposed energy profiling tool
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collected data correspond to a diverse workload. Figure 7

shows a portion of the training data set.

Building the energy consumption model: Following the

acquisition of the training data set, we calibrated the RDF

algorithm to achieve a minimal value of the mean-squared

error criterion, by using a test data set composed of 600

samples. Then, we study the influence of the number of

estimators (decision trees) on the MSE given by the trained

model. In Fig. 8, we present the MSE values obtained by

different forests sizes.

The minimal MSE value is obtained by using 152 trees

in the decision forests algorithm. However, the MSE value

can be minimized further by studying the effect of

combining the previous workload samples at time t � p to

estimate the consumption at time t where

p ¼ f0; 1; 2; . . .; pg. Thus, the mapping function will take

the following form presented in Eq. 3. The corresponding

results are presented in Table 5.

gðvt; vt�1; vt�2; . . .; vt�pÞ ¼ yt ð3Þ

The analysis of using the previous workload samples to

estimate the actual energy usage at the time t shows an

enhancement in the minimal MSE value. The best config-

uration is given by using three previous workload sample

data. Therefore, the energy consumption at a time t on our

device is relative to the current and three previous work-

loads. Figure 9 shows the difference between the estimated

energy consumption and the real consumption as it was

observed during the recording of the test data set.

Evaluating the energy consumption of software: first, we

estimate the energy consumption of YouTube’s (video-

sharing website) mobile application that decodes the videos

using the H.264 video encoder.3 Figure 10 shows the

resource usage and the estimated energy consumption data

of the software while being used to play the same video in

two different display resolutions (standard-definition 360p

and high-definition 720p).

We notice from the estimation that the high-quality

video consumes more energy than a standard-definition

video. In other words, the operation of decoding a stan-

dard-definition resolution video is more green efficient

(computation and communication) than decoding a high-

definition resolution. Therefore, users should select the

standard-definition quality on mobile devices to save

energy (battery life).

In the second test, we measure the energy consumption

of three Web browsers (Mozilla Firefox, Google Chrome,

Opera’s Opera Mini Web Browser). The browsers are

tested during different tasks:

(a) Idle state.

(b) Connecting to the website Y.4

(c) Scrolling over the index page of Y.

(d) Connecting to F5 account.

(e) Scrolling over the accounts home page F.

(f) Connecting to G.6

(g) Switching from page Y to page F then page G.

(h) Closing all tabs.

The total consumption per browser is presented in Table 6,

which shows that the Mini Opera Browser consumes less

Table 3 Experiment’s mobile device characteristics

Characteristic Type

Device name Samsung Galaxy Tab 3 10.1 P5200

OS Android OS v4.2.2 (Jelly Bean)

CPU Dual-core 1.6 GHz

Memory Internal 16/32 GB, 1 GB RAM

2G network GSM 850/900/1800/1900

3G network HSDPA 850/900/1900/2100

WLAN network Wi-fi 802.11 a/b/g/n dual-band

Battery Li-Po 6800 mAh battery

Table 4 Mobile platform regression model (input/output data)

Components Types Metrics Unites

Input CPU Computation Usage Per cent

Frequency GHz

Memory Storage Read Bytes

Write Bytes

WLAN Communication Sending Bytes

Reception Bytes

Output Battery Energy Usage uA

Fig. 6 Data sampling script

3 http://www.itu.int/rec/T-REC-H.264.2/.
4 www.youtube.com.
5 www.facebook.com.
6 www.google.com.
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Fig. 7 Three hundred samples

of the collected data set

Fig. 8 Mean-squared error per

estimator number
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energy than the Google’s Chrome and that consumes less

energy than Firefox. The measurement results of the dif-

ferent operations are presented in Fig. 11.

5.2 Evaluation of PC-based software applications

In this experiment, we adapted the energy profiling tool to

measure the energy consumption of desktop computer-

based software applications. The hardware configuration is

composed of an Intel Core i5-3550 @ 3.30GHz (4 cores)

processor, 4096 MB memory, Intel DZ77GA-70K moth-

erboard, a hard disk, and an the Intel 82579V Gigabit

Connection network interface. The device is also equipped

Table 5 Mean-squared error per different time lags

p 0 1 2 3 4

MSE 2259e3 2196e3 2153e3 2153e3 2166e3

Fig. 9 Observed and estimated energy consumption

Fig. 10 Youtube’s mobile

application energy consumption

at different video resolutions
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with an internal power supervisor to provide the energy

usage.

The established energy consumption model is used to

evaluate and compare the green efficiency of some most

well-known sorting algorithms, which are the bubble sort,

the modified bubble sort, the insertion sort, the selection

sort, the merge sort, and the quick sort. Usually, the sorting

algorithms are judged by their algorithmic efficiency that is

based on the number of elements to sort. The best case,

average case, and worst case of the algorithmic efficiency

of the presented algorithms are presented in Table 7. The

presented sorting algorithms are implemented using the

C?? programming language, and they are used to sort an

array of one hundred thousand (100,000) integers in an

ascending order. The energy consumption of each algo-

rithm is presented in Fig. 12.

Table 8 provides the total energy consumption of the

different sorting algorithms. The most green efficient

sorting algorithms are the merge sort and the quick sort

algorithms. They both consumed 2.90 J to accomplish the

sorting of the array.

In this case, we evaluated the computational efficiency

of the sorting algorithms. The optimal energy consumption

is due to the sorting using the merge sort and the quick sort

algorithms that have a similar algorithmic efficiency of

O(n log(n)). The greatest energy consumption is performed

by the modified bubble sort algorithm (144.07 J). From

comparison of the CPU usage and frequency related to the

bubble sort and modified bubble sort algorithms, we notice

that the modified bubble sort algorithm involves a high

CPU frequency to sort the array as it is shown in Fig. 13.

6 Related work

This section presents the related work in three areas: green

software development process, the issues raised by the

green requirements, and measuring software green

efficiency.

Green software development process: several works

have been proposed to express the green issues in the

software engineering process. Dick and Naumann et al. [7]

propose an extension of the software development model to

cover the sustainability by introducing four subprocesses to

the software engineering process: sustainability reviews

and previews, process assessment, sustainability journal,

Table 6 Browser energy consumption comparison

Browser Firefox Chrome Opera

Energy consumption (A) 31.50 26.90 22.58

Fig. 11 Mobile browsers

energy consumption comparison

over different tasks

Table 7 Comparative chart of the algorithmic efficiency of the

sorting algorithms

Algorithm Algorithmic efficiency

Best Average Worst

Bubble sort O(n2) O(n2) O(n2)

Modified bubble sort O(n) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)

Selection sort O(n2) O(n2) O(n2)

Merge sort O(n logðnÞ) O(n logðnÞ) O(n logðnÞ)
Quick sort O(n logðnÞ) O(n logðnÞ) O(n2)
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and sustainability retrospective. Additionally, they recom-

mend a list of exemplary tools, checklists, and guidelines to

assist the software sustainable development. The presented

model in [7] has been integrated into the GreenSoft model

[17] that is proposed as a four-part model: (1) the first part

assesses sustainability at software’s life cycle (develop-

ment, usage, and disposal); (2) the second part represents

the green metrics and the criteria, where metrics have been

classified into three categories: common quality, directly

related, and indirectly related; (3) the third part consists of

the procedures explained in the previous related work [7];

and (4) the fourth part of the GreenSoft model is devoted to

assessing the recommendations and tools to contain

guidelines and checklists for the green practices. Further-

more, a detailed model of sustainability criteria and metrics

of the GreenSoft model has been provided in research [12]

where Dick et al. proposed the following metrics: energy

efficiency, CPU-intensity, memory usage, peripheral

intensity, and idleness to measure the sustainability of the

software. In another work, Lami et al. [14] focused on

greening the software development process itself by iden-

tifying green drivers of the project and deriving a set of

Fig. 12 Energy consumption of

different sorting algorithms

Table 8 Total energy

consumption of sorting

algorithms

Algorithm Bubble sort Modified bubble sort Selection sort

Energy consumption (joules) 129.17 144.07 38.99

Algorithm Insertion sort Merge sort Quick sort

Energy consumption (joules) 36.40 2.9 2.9

Fig. 13 CPU frequency and usage metrics measurement of the

bubble and modified bubble sorting algorithms
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measurable sustainability indicators. On the basis of the

software development life cycle, the authors [27] proposed

some practices for each phase of the development process

to help in developing eco-friendly software systems.

Green software requirements: many works in the liter-

ature assessed the need of specifying the green require-

ments. Lami et al. [13] proposed ‘‘sustainability’’ as a

characteristic to be integrated into the ISO/IEC 25010/2011

standard and to be seen from both the internal/external and

in-use views. The level of interest in their proposition is

related to Direct Effects caused by Information and Com-

munication Technology (ICT) infrastructures and equip-

ments (i.e. the resource consumption when producing ICT

equipment, the energy consumption when using ICT, and

the effects of the resulting electronic waste.). As a result,

they presented a set of sustainability factors grouped into

five assets: people, project infrastructure, processes, insti-

tutional context, and product. Raturi et al. [23] presented a

description of a non-functional requirements (NFR)

framework that characterizes the sustainability of the

software based on the sustainability dimensions (human,

social, economic, environmental sustainability, and tech-

nical sustainability) and the three orders of Green IT (direct

effects, indirect effects, broad-scale socio-economic struc-

tural changes). The authors discuss how to use the frame-

work to elicit and to describe sustainability related

requirements by presenting an example of the Hotel

Tracking Resources System. Furthermore, Calero et al. [4]

propose the ISO/IEC 25010?S model to overcome the

sustainability of the software as product and in-use quali-

ties. The authors adopted the characteristics and subchar-

acteristics that have a direct impact on the sustainability

(e.g. time behaviour, resource utilization, learnability,

accessibility) and adapted the characteristics that do not

express the sustainability (e.g. sustainability functional

appropriateness, sustainability capacity, sustainability

effectiveness).

Green metrics: Adel Noureddine et al. [18] propose the

POWER API to estimate the energy consumption of run-

ning processes. The authors rely on the information about

the CPU and the network card components, which are

provided by the sensors associated with these components

of the device, to establish the energy models. The authors

presented the impact of the algorithm’s implementation

and programming languages on the energy consumption

behaviour of the software. In [19], the authors review the

main approaches and tools for measuring and estimating

the energy consumption of the software. In addition, they

provided the existing formulas to calculate the energy

consumption of the hardware using linear regression

analysis. Moreover, Povoa et al. [21] propose and evaluate

a linear regression model to estimate data centre energy

consumption based on information about the utilization of

computational resources (e.g. processor, memory, network

interface, disc) to discover the biggest energy consumption

components in order to identify the most influential com-

ponents using the maximal information coefficient (MIC)

approach. They used an external power sensor to measure

the energy consumed by the nodes in the data centre and

deployed several stress tests in order to generate a work-

load to measure the resource usage. Similarly, Samak

et al. [25] present a regression model to predict the energy

consumption of two clusters in the Grid5000 Test-bed by

analysing a data set that compromise a 6-month period in

order to establish the coefficients of the auto-regression

moving average (ARMA) model as a time series approach

using the energy consumption records as a single time

series. Another work [5] has presented a model for evalu-

ating energy consumption in the process layer starting from

the analysis of the characteristics of the activities com-

posing the process and the resources in use. A way to

improve energy efficiency is proposed through a list of

energy-aware adaptation strategies that are based on a set

of green performance indicators (GPIs) and quality of

system (QoS). In the work presented in [16], the authors

presented Wattson, which is an application to identify the

segments of a mobile application that have high energy

consumption. The presented application allows the deter-

mination of the components (display, network, or CPU)

that consume the most energy during the mobile app run,

which allow the researchers to study the energy con-

sumption in different circumstances (different phone

models, 2G or 3G network usage, different screen bright-

ness, low signal strength area). Hindle [10] proposed the

green mining methodology, which is composed of seven

steps to measure and extract the power consumption

information related to software changes. In this work, the

author performed tests on two software (Firefox and

Azureus) using an external device to study the impact of

the software changes on the energy consumption.

7 Conclusion

In this paper, we introduced green efficiency as a software

quality in order to target the usage of the energy opti-

mization techniques during the development stage. The

goal of proposing such a non-functional characteristic is to

consolidate green practices during the implementation of

software. The proposed characteristic concerns the soft-

ware itself and aims to mitigate the energy consumption

caused by the computation, storage, and communication

workload. Furthermore, we proposed an approach to

establish an energy profiling tool to locate the energy-

consuming portions of code. To estimate the energy usage

of software on different information technology platforms,
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the energy consumption model is built to fit a variety of

hardware configurations and devices. The approach is

based on the random decision forests method to develop a

model of energy consumption. Our approach eliminates the

noise that can be produced by other running applications,

which means that the provided energy usage can be reliable

enough to evaluate the green aspects of the software ade-

quately. The second advantage of the established model is

its extensibility and adaptability to estimate the energy

consumption at different platforms. However, this

approach is highly dependent on the recorded data collec-

tion that is used to train the RDF regression algorithm. A

model that does not cover the software behaviour at certain

conditions may fail to perform accurate estimations.

Moreover, the data sampling rate influences the granularity

of the estimation, and subsequently, the energy profiling

approach is less efficient in a complex environment where

rendering the computations is difficult to elicit and

conduct.

Green efficiency is considered as a primary aspect that

affects the software itself and that is expressed as an

internal/external quality in the requirements model. How-

ever, to establish an entirely sustainable software, the in-

use quality model must also be studied to overcome all the

sustainability pillars (environmental, economic, and

social). A green in-use quality model might enhance the

sustainability issues that reflect on the software during the

final usage stage (e.g. the reduction in the paper and ink

wastes).
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